Discrete Markov chains and mixing times Homework 3

Due 4 月 15 日 (周一) at the start of class.

1 Textbook problems

- Chapter 5: 5.1, 5.2, 5.4, 5.5
- Chapter 6: 6.2, 6.4, 6.8, 6.10

2 Additional problems

- 1. Give an example of a random walk on \mathbb{Z} which shows that the bound in Proposition 5.7 is (asymptotically) sharp.
- 2. Let G = (V, E) be a graph. A forest F in G is a subgraph that has no cycles, i.e. a collection $F = \{T_1, \ldots, T_n\}$ of trees T_j in Λ , where T_j and T_k share no vertices if $j \neq k$. The arboreal gas model is family of probability measures $\{\mathbb{P}_{\beta,h}\}$ on the collection $\mathcal{X} = \mathcal{F}(G)$ of all forests in G, parametrized by the inverse temperature $\beta > 0$ and the magnetic field $h \geq 0$. For $F \in \mathcal{F}$,

$$\mathbb{P}_{\beta,h}(F) := \frac{1}{Z(\beta,h)} \beta^{|E(F)|} \prod_{T_j \in F} (1+h|V(T_j)|),$$

where |E(F)| is the number of edges in F, and $|V(T_j)|$ is the number of vertices in the tree T_j , and $Z(\beta, h)$ is the usual partition function.

(a) Describe qualitatively how the measure changes when the parameters β and h vary.

- (b) Describe how the Glauber dynamics on \mathcal{F} for $\mathbb{P}_{\beta,h}$. Give explicit transition probabilities. (There are four possible cases.) Explain how the dynamics extends to the entire collection \tilde{F} of all subgraphs (not just forests) of G.
- (c) For fixed $\mathbb{P}_{\beta,h}$, construct a grand coupling $\{(X_t^f)_{t\geq 0} : f \in \tilde{\mathcal{F}}\}$.
- (d) We would like to imitate the proof strategy for Theorems 5.8 and 5.9 to give bounds on the mixing time for the Glauber dynamics for $\mathbb{P}_{\beta,h}$. Define a natural metric ρ on \tilde{F} and compute $\mathbb{P}(\rho(X_1^f, X_1^g) = 0)$ given that $f, g \in \tilde{\mathcal{F}}$ satisfy $\rho(f, g) = 1$.
- (e) Unfortunately we can't finish the argument using the same ideas. What breaks down? (Understanding this helps us appreciate the difficulty of the arboreal gas model in comparison to the q-coloring and hardcore models.)