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Three perspectives on Markov chains

I. A sequence of random variables (X0,X1, . . .) with associated
stochastic matrix P ∈ M|X |2 such that

P(Xt+1 = y |Xt = x ,Xt−1 = xt−1, . . . ,X0 = x0)

=P(Xt+1 = y |Xt = x)

=P(x , y)

II. A measurable map X → P(X )

III. A map

P(X )×M|X |2 → P(X )∞

(µ0,P) 7→ (µ0, µ0P, µ0P
2, . . .) = (µ0, µ1, µ2, . . .),

with µk the distribution of Xk in X
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Recall

▶ §1.2: Given P, we can always find a random mapping
representation, namely a function f and random variable Z
satisfying

P(x , y) = P(f (x ,Z ) = y)

E.g.: walk on Zn, P(j , k) = P(j + Z = k mod n),
Z ∼ Unif{−1, 1}.

▶ §1.3: We will mostly care about irreducible (“connected”) and
aperiodic Markov chains. If P is periodic, can replace it with
the lazy chain 1

2(I + P).
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Recall

▶ §1.5: a row vector π ∈ P(X ) is a stationary distribution if
πP = π.
▶ If limt→∞ µt = ν exists, ν is necessarily stationary
▶ If µ0 = π, then µk = π for all k

▶ For the simple random walk on (the vertices) of a graph, for
x ∈ V ,

π(x) =
deg(x)

2|E |

▶ Note: if πP = π,

π
I + P

2
= π,

so “lazyfication” does not change π
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Recall

▶ Lemma 1.13. For irreducible P (and |X | < ∞),

Ex(τ
+
y ) < ∞

for any x , y ∈ X

▶ Excursus: not true for MC’s on infinite state spaces. Consider
simple random walk on Z with X0 = 0. Claim: E0(τ1) = +∞.

▶ Write Xk =
∑k

j=1 Yj , where Yj are iid Unif{−1, 1} R.V.’s
▶ If E0(τ1) < ∞, then by Wald’s equation (see Durrett 5th

edition §2.6),

1 = E0(Xτ1) = E0

(
τ1∑
j=1

Yj

)
= E0(τ1)E(Y1) = 0

▶ In fact, P0(τ1 > t) = O(t−1/2), whereas in the finite case,
Px(τ

+
y > t) = O(δt) for some δ < 1.
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Recall

Fix z ∈ X and define

π̃(x) := Ez(visits to x before τ+z ) = Ez

( ∞∑
t=0

1{Xt = x , τ+z > t}

)

Proposition 1.14. (i) If Pz(τ
+
z < ∞) = 1, then π̃ = π̃P. (ii) If

Ez(τ
+
z ) < ∞, then π̃/Ez(τ

+
z ) is a stationary distribution.

Proof: Already saw (i) (modulo a few details). For (ii), normalize
to get a probability measure:

∑
x∈X

π̃(x) = Ez

( ∞∑
t=0

∑
x∈X

1{Xt = x}1{τ+z > t}

)

= Ez

( ∞∑
t=0

1{τ+z > t}

)
= Ez(τ

+
z ) < ∞.
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Conclusions for §1.5.3

▶ At state z , the stationary distribution is therefore

π(z) =
π̃(z)

Ez(τ
+
z )

=
1

Ez(τ
+
z )

And since z ∈ X was arbitrary, π(x) = 1/Ex(τ
+
x ) for all x

▶ By Lemma 1.13, irreducible chains therefore always have a
stationary distribution

▶ For simple random walk on a graph, π(x) = deg(x)/(2|E |),
and thus

Ex(τ
+
x ) =

2|E |
deg(x)

Surprising!
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