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Three perspectives on Markov chains

|. A sequence of random variables (Xp, Xi,...) with associated
stochastic matrix P € M y2 such that

P(Xet1 =y | Xe = x, Xe—1 = X¢—1, ..., Xo = X0)
=P(Xey1 =y | Xt = x)
=P(x,y)
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Three perspectives on Markov chains

|. A sequence of random variables (Xp, Xi,...) with associated
stochastic matrix P € M y2 such that

P(Xet1 =y | Xe = x, Xe—1 = X¢—1, ..., Xo = X0)
=P(Xey1 =y | Xt = x)
=P(x,y)

Il. A measurable map X — P(X)
. A map

(MO? P) = (MO),UOPMUUPZ’ .. ) = (MO:M17M27 .. ')7

with wy the distribution of X in X

Review of lecture 1



Recall

» §1.2: Given P, we can always find a random mapping
representation, namely a function f and random variable Z
satisfying

P(x,y) = B(f(x, Z) = y)

E.g.: walk on Z,,, P(j, k) =P(j + Z = k mod n),
Z ~ Unif{—1,1}.
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Recall

» §1.2: Given P, we can always find a random mapping
representation, namely a function f and random variable Z
satisfying

P(x,y) = B(f(x, Z) = y)

E.g.: walk on Z,,, P(j, k) =P(j + Z = k mod n),
Z ~ Unif{~1,1}.

» §1.3: We will mostly care about irreducible ( “connected”) and
aperiodic Markov chains. If P is periodic, can replace it with
the lazy chain 3(/ + P).
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Recall

» §1.5: a row vector m € P(X) is a stationary distribution if
TP =m.
» If lim;_, o pty = I exists, v is necessarily stationary
» If po = m, then py = 7 for all k
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Recall

» §1.5: a row vector m € P(X) is a stationary distribution if
TP =m.
» If lim;_, o pty = I exists, v is necessarily stationary
» If po = m, then py = 7 for all k
» For the simple random walk on (the vertices) of a graph, for
xevV,

~ deg(x)
)=l
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Recall

» §1.5: a row vector m € P(X) is a stationary distribution if
TP =m.

» If lim;_, o pty = I exists, v is necessarily stationary
» If po = m, then py = 7 for all k

» For the simple random walk on (the vertices) of a graph, for

xevV,
~ deg(x)
» Note: if 7P =,
I+ P
T 5 =,

so "lazyfication”" does not change w
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Recall
» Lemma 1.13. For irreducible P (and |X| < o0),
Ex(1;]) < o0

forany x,y € X
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Recall
» Lemma 1.13. For irreducible P (and |X| < o0),
EX(T;) < 00

forany x,y € X

» Excursus: not true for MC's on infinite state spaces. Consider
simple random walk on Z with Xy = 0.
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» Excursus: not true for MC's on infinite state spaces. Consider
simple random walk on Z with Xo = 0. Claim: Eo(71) = +oc.

Review of lecture 1



Recall
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» Excursus: not true for MC's on infinite state spaces. Consider
simple random walk on Z with Xo = 0. Claim: Eo(71) = +oc.

> Write X = 3, Y, where Y; are iid Unif{~1,1} R.V.'s
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Recall
» Lemma 1.13. For irreducible P (and |X| < o0),
EX(T;) < 00

forany x,y € X
» Excursus: not true for MC's on infinite state spaces. Consider
simple random walk on Z with Xo = 0. Claim: Eo(71) = +oc.
> Write X = 3, Y, where Y; are iid Unif{~1,1} R.V.'s
> If Eo(71) < oo, then by Wald's equation (see Durrett 5th
edition §2.6),

1=Eo(X (ZY) Eo(m1)E(Y1) =0
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Recall
» Lemma 1.13. For irreducible P (and |X| < o0),
EX(T;) < 00

forany x,y € X

» Excursus: not true for MC's on infinite state spaces. Consider
simple random walk on Z with Xo = 0. Claim: Eo(71) = +oc.

> Write X, = S5, ¥, where ¥; are iid Unif{~1,1} R.V.'s
> If Eo(71) < oo, then by Wald's equation (see Durrett 5th

edition §2.6),
1=Eo(X (ZY) Eo(m1)E(Y1) =0

O(t~1/?), whereas in the finite case,

> In fact, Po(my > t) =
= O(d") for some § < 1.

P.(7,) > t)
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Recall
Fix z € X and define

E, (visits to x before 7, (Z VX =x, 7} > t})

o0) =1, then @ = 7P. (ii) If

7(x) =

Proposition 1.14. (i) If P,(7;} <
E,(7;}") < oo, then 7 /E,(7;") is a stationary distribution.
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Recall
Fix z € X and define

E, (visits to x before 7, (Z VX =x, 7} > t})

o0) =1, then @ = 7P. (ii) If

7(x) =

Proposition 1.14. (i) If P,(7;} <
E,(7;}") < oo, then 7 /E,(7;") is a stationary distribution.

Proof: Already saw (i) (modulo a few details).
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Recall
Fix z € X and define

#(x) := E,(visits to x before 7, (Z VX =x, 7} > t})

Proposition 1.14. (i) If P,(7;7 < o0) = 1, then # = 7P. (ii) If
E,(7;}") < oo, then 7 /E,(7;") is a stationary distribution.

Proof: Already saw (i) (modulo a few details). For (ii), normalize
to get a probability measure:

Y #(x) =E. (Z > X =x31{r) > t}>

XEX t=0 xeX

[e.e]
= Ez(ZI{T; > t}) =E, (7)) <o0. O
t=0



Conclusions for §1.5.3

> At state z, the stationary distribution is therefore

_ #®(z) 1
") = 5 T BT

And since z € X was arbitrary, m(x) = 1/E,(7;}) for all x
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Conclusions for §1.5.3

> At state z, the stationary distribution is therefore

_ #®(z) 1
") = 5 T BT

And since z € X was arbitrary, m(x) = 1/E,(7;}) for all x

> By Lemma 1.13, irreducible chains therefore always have a
stationary distribution
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Conclusions for §1.5.3

> At state z, the stationary distribution is therefore

_ 7)) _ 1
") T B
And since z € X was arbitrary, m(x) = 1/E,(7;}) for all x

> By Lemma 1.13, irreducible chains therefore always have a
stationary distribution

» For simple random walk on a graph, m(x) = deg(x)/(2|E
and thus

).

_ 2]

Ex(r) = deg(x)

Surprising!
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