Review of lecture 1

Lecture 2, Wednesday February 21

Review of lecture 1

Three perspectives on Markov chains

I. A sequence of random variables $(X_0, X_1, ...)$ with associated stochastic matrix $P \in \mathbb{M}_{|\mathcal{X}|^2}$ such that

$$\mathbb{P}(X_{t+1} = y \mid X_t = x, X_{t-1} = x_{t-1}, \dots, X_0 = x_0)$$

=\mathbb{P}(X_{t+1} = y \mid X_t = x)
=\mathbb{P}(x, y)

Three perspectives on Markov chains

I. A sequence of random variables $(X_0, X_1, ...)$ with associated stochastic matrix $P \in \mathbb{M}_{|\mathcal{X}|^2}$ such that

$$\mathbb{P}(X_{t+1} = y \mid X_t = x, X_{t-1} = x_{t-1}, \dots, X_0 = x_0)$$

=\mathbb{P}(X_{t+1} = y \mid X_t = x)
=\mathbb{P}(x, y)

II. A measurable map $\mathcal{X}
ightarrow \mathcal{P}(\mathcal{X})$

Three perspectives on Markov chains

I. A sequence of random variables $(X_0, X_1, ...)$ with associated stochastic matrix $P \in \mathbb{M}_{|\mathcal{X}|^2}$ such that

$$\mathbb{P}(X_{t+1} = y \mid X_t = x, X_{t-1} = x_{t-1}, \dots, X_0 = x_0)$$

=\mathbb{P}(X_{t+1} = y \mid X_t = x)
=\mathbb{P}(x, y)

II. A measurable map $\mathcal{X} \to \mathcal{P}(\mathcal{X})$ III. A map

$$\mathcal{P}(\mathcal{X}) imes \mathbb{M}_{|\mathcal{X}|^2} o \mathcal{P}(\mathcal{X})^{\infty}$$

 $(\mu_0, P) \mapsto (\mu_0, \mu_0 P, \mu_0 P^2, \ldots) = (\mu_0, \mu_1, \mu_2, \ldots),$

with μ_k the distribution of X_k in \mathcal{X}

§1.2: Given P, we can always find a random mapping representation, namely a function f and random variable Z satisfying

$$P(x,y) = \mathbb{P}(f(x,Z) = y)$$

E.g.: walk on \mathbb{Z}_n , $P(j, k) = \mathbb{P}(j + Z = k \mod n)$, $Z \sim \text{Unif}\{-1, 1\}.$

 §1.2: Given P, we can always find a random mapping representation, namely a function f and random variable Z satisfying

$$P(x,y) = \mathbb{P}(f(x,Z) = y)$$

- E.g.: walk on \mathbb{Z}_n , $P(j, k) = \mathbb{P}(j + Z = k \mod n)$, $Z \sim \text{Unif}\{-1, 1\}.$
- ▶ §1.3: We will mostly care about *irreducible* ("connected") and *aperiodic* Markov chains. If P is periodic, can replace it with the lazy chain ¹/₂(I + P).

- §1.5: a row vector $\pi \in \mathcal{P}(\mathcal{X})$ is a stationary distribution if $\pi P = \pi$.
 - If $\lim_{t\to\infty} \mu_t = \nu$ exists, ν is necessarily stationary
 - If $\mu_0 = \pi$, then $\mu_k = \pi$ for all k

A ≥ ▶

- §1.5: a row vector $\pi \in \mathcal{P}(\mathcal{X})$ is a stationary distribution if $\pi P = \pi$.
 - If $\lim_{t\to\infty} \mu_t = \nu$ exists, ν is necessarily stationary
 - If $\mu_0 = \pi$, then $\mu_k = \pi$ for all k
- ► For the simple random walk on (the vertices) of a graph, for x ∈ V,

$$\pi(x) = \frac{\deg(x)}{2|E|}$$

- §1.5: a row vector $\pi \in \mathcal{P}(\mathcal{X})$ is a stationary distribution if $\pi P = \pi$.
 - If $\lim_{t\to\infty} \mu_t = \nu$ exists, ν is necessarily stationary

• If
$$\mu_0 = \pi$$
, then $\mu_k = \pi$ for all k

► For the simple random walk on (the vertices) of a graph, for x ∈ V,

$$\pi(x) = \frac{\deg(x)}{2|E|}$$

Note: if
$$\pi P = \pi$$
,
 $\pi \frac{I+P}{2} = \pi$,

so "lazyfication" does not change π

• Lemma 1.13. For irreducible P (and $|\mathcal{X}| < \infty$),

 $\mathbb{E}_x(\tau_y^+) < \infty$

for any $x, y \in \mathcal{X}$

▲ □ ▶ ▲ □ ▶ ▲

• Lemma 1.13. For irreducible P (and $|\mathcal{X}| < \infty$),

 $\mathbb{E}_x(\tau_y^+) < \infty$

for any $x, y \in \mathcal{X}$

Excursus: not true for MC's on infinite state spaces. Consider simple random walk on Z with X₀ = 0.

• Lemma 1.13. For irreducible P (and $|\mathcal{X}| < \infty$),

 $\mathbb{E}_x(\tau_y^+) < \infty$

for any $x, y \in \mathcal{X}$

Excursus: not true for MC's on infinite state spaces. Consider simple random walk on Z with X₀ = 0. Claim: E₀(τ₁) = +∞.

• Lemma 1.13. For irreducible P (and $|\mathcal{X}| < \infty$),

 $\mathbb{E}_x(\tau_y^+) < \infty$

for any $x, y \in \mathcal{X}$

Excursus: not true for MC's on infinite state spaces. Consider simple random walk on Z with X₀ = 0. Claim: E₀(τ₁) = +∞.

• Write $X_k = \sum_{j=1}^k Y_j$, where Y_j are iid Unif $\{-1, 1\}$ R.V.'s

• Lemma 1.13. For irreducible P (and $|\mathcal{X}| < \infty$),

 $\mathbb{E}_x(\tau_y^+) < \infty$

for any $x, y \in \mathcal{X}$

Excursus: not true for MC's on infinite state spaces. Consider simple random walk on Z with X₀ = 0. Claim: E₀(τ₁) = +∞.

- Write $X_k = \sum_{j=1}^k Y_j$, where Y_j are iid Unif $\{-1, 1\}$ R.V.'s
- If E₀(τ₁) < ∞, then by Wald's equation (see Durrett 5th edition §2.6),</p>

$$1 = \mathbb{E}_0(X_{\tau_1}) = \mathbb{E}_0\left(\sum_{j=1}^{\tau_1} Y_j\right) = \mathbb{E}_0(\tau_1)\mathbb{E}(Y_1) = 0$$

• Lemma 1.13. For irreducible P (and $|\mathcal{X}| < \infty$),

 $\mathbb{E}_x(\tau_y^+) < \infty$

for any $x, y \in \mathcal{X}$

Excursus: not true for MC's on infinite state spaces. Consider simple random walk on Z with X₀ = 0. Claim: E₀(τ₁) = +∞.

- Write $X_k = \sum_{j=1}^k Y_j$, where Y_j are iid Unif $\{-1, 1\}$ R.V.'s
- If E₀(τ₁) < ∞, then by Wald's equation (see Durrett 5th edition §2.6),</p>

$$1 = \mathbb{E}_0(X_{\tau_1}) = \mathbb{E}_0\left(\sum_{j=1}^{\tau_1} Y_j\right) = \mathbb{E}_0(\tau_1)\mathbb{E}(Y_1) = 0$$

▶ In fact, $\mathbb{P}_0(\tau_1 > t) = O(t^{-1/2})$, whereas in the finite case, $\mathbb{P}_x(\tau_y^+ > t) = O(\delta^t)$ for some $\delta < 1$.

Fix $z \in \mathcal{X}$ and define

$$\widetilde{\pi}(x) := \mathbb{E}_z(\text{visits to } x \text{ before } \tau_z^+) = \mathbb{E}_z \left(\sum_{t=0}^\infty \mathbf{1}\{X_t = x, \tau_z^+ > t\} \right)$$

Proposition 1.14. (i) If $\mathbb{P}_z(\tau_z^+ < \infty) = 1$, then $\tilde{\pi} = \tilde{\pi}P$. (ii) If $\mathbb{E}_z(\tau_z^+) < \infty$, then $\tilde{\pi}/\mathbb{E}_z(\tau_z^+)$ is a stationary distribution.

Fix $z \in \mathcal{X}$ and define

$$ilde{\pi}(x) := \mathbb{E}_z(ext{visits to } x ext{ before } au_z^+) = \mathbb{E}_z \Bigg(\sum_{t=0}^\infty \mathbf{1}\{X_t = x, au_z^+ > t\}\Bigg)$$

Proposition 1.14. (i) If $\mathbb{P}_z(\tau_z^+ < \infty) = 1$, then $\tilde{\pi} = \tilde{\pi}P$. (ii) If $\mathbb{E}_z(\tau_z^+) < \infty$, then $\tilde{\pi}/\mathbb{E}_z(\tau_z^+)$ is a stationary distribution.

Proof: Already saw (i) (modulo a few details).

Fix $z \in \mathcal{X}$ and define

$$ilde{\pi}(x) := \mathbb{E}_z(ext{visits to } x ext{ before } au_z^+) = \mathbb{E}_z \Bigg(\sum_{t=0}^\infty \mathbf{1}\{X_t = x, au_z^+ > t\}\Bigg)$$

Proposition 1.14. (i) If $\mathbb{P}_z(\tau_z^+ < \infty) = 1$, then $\tilde{\pi} = \tilde{\pi}P$. (ii) If $\mathbb{E}_z(\tau_z^+) < \infty$, then $\tilde{\pi}/\mathbb{E}_z(\tau_z^+)$ is a stationary distribution.

Proof: Already saw (i) (modulo a few details). For (ii), normalize to get a probability measure:

$$\sum_{x \in \mathcal{X}} \tilde{\pi}(x) = \mathbb{E}_z \left(\sum_{t=0}^{\infty} \sum_{x \in \mathcal{X}} \mathbf{1} \{ X_t = x \} \mathbf{1} \{ \tau_z^+ > t \} \right)$$
$$= \mathbb{E}_z \left(\sum_{t=0}^{\infty} \mathbf{1} \{ \tau_z^+ > t \} \right) = \mathbb{E}_z(\tau_z^+) < \infty. \quad \Box$$

Conclusions for §1.5.3

• At state z, the stationary distribution is therefore

$$\pi(z) = rac{ ilde{\pi}(z)}{\mathbb{E}_z(au_z^+)} = rac{1}{\mathbb{E}_z(au_z^+)}$$

And since $z \in \mathcal{X}$ was arbitrary, $\pi(x) = 1/\mathbb{E}_x(au_x^+)$ for all x

Conclusions for §1.5.3

• At state z, the stationary distribution is therefore

$$\pi(z) = rac{ ilde{\pi}(z)}{\mathbb{E}_z(au_z^+)} = rac{1}{\mathbb{E}_z(au_z^+)}$$

And since $z \in \mathcal{X}$ was arbitrary, $\pi(x) = 1/\mathbb{E}_x(\tau_x^+)$ for all x

 By Lemma 1.13, irreducible chains therefore always have a stationary distribution

Conclusions for §1.5.3

• At state z, the stationary distribution is therefore

$$\pi(z) = rac{ ilde{\pi}(z)}{\mathbb{E}_z(au_z^+)} = rac{1}{\mathbb{E}_z(au_z^+)}$$

And since $z \in \mathcal{X}$ was arbitrary, $\pi(x) = 1/\mathbb{E}_x(au_x^+)$ for all x

- By Lemma 1.13, irreducible chains therefore always have a stationary distribution
- For simple random walk on a graph, π(x) = deg(x)/(2|E|), and thus

$$\mathbb{E}_x(\tau_x^+) = \frac{2|E|}{\deg(x)}$$

Surprising!