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Introduction

In probability theory, the coupon collector’s problem refers to mathematical
analysis of "collect all coupons and win” contests.
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Introduction

In probability theory, the coupon collector’s problem refers to mathematical
analysis of "collect all coupons and win” contests.

Problem

How many coupons must we obtain so that our collection contains all n types?
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Markov Chain

Our Model

Let X; denote the number of different types of coupon represented among our
first ¢ coupons.
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Markov Chain

Our Model

Let X; denote the number of different types of coupon represented among our
first ¢ coupons.

(] XOZO;
OP(Xt+1:k+1|Xt:k’):1—§:n_k,

k
(] P(Xt+1 = let = k) = %

n
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Markov Chain

Our Model

Let X; denote the number of different types of coupon represented among our
first ¢ coupons.

(] XOZO;
OP(Xt+1:k+1|Xt:k):1—§:n_k,

k
(] P(Xt+1 = let = k) = E

Classifying the States

@ Absorbing state: n;
@ Essential state: n;

o Communicating class: {n}.
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Expectation

Let 7 = inf{¢t > 0 : X; = n} be the number of coupons collected when our
collection contains all n types.
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Expectation

Let 7 = inf{¢t > 0 : X; = n} be the number of coupons collected when our
collection contains all n types.

Theorem (Proposition 2.3, MCMT)

1
E(r) = nH,, where H, := Z i
k=1
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Expectation

Let 7 = inf{¢t > 0 : X; = n} be the number of coupons collected when our
collection contains all n types.

Theorem (Proposition 2.3, MCMT)

1
E(r) = nH,, where H, := Z i
k=1

Proof. Let 7, = inf{¢t > 71 : X: = k} be the total number of coupons when the
collection first contains k different coupons. Then

T=mh=m1+(e—71)+ 4+ (T —Tn-1).

Next we analyse the distribution of each 7, — 74_1.
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n—k+1

Th — Th—1 ~ G
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Tk—Tk—1~g<

n—k+1
" )

Proof. After collecting k£ — 1 types, there are n — k+ 1 types missing from the
collection. Each missing coupon has the same probability

k=1 n—k+1
n n

1—

to be collected. O
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Tk—Tk—1~g<

n—k+1
" )

Proof. After collecting k£ — 1 types, there are n — k+ 1 types missing from the
collection. Each missing coupon has the same probability

k—1 n—k+1
n n

1—

to be collected. O

Recall (Geometric Distribution)
Let X ~ G(p), then

o Distribution: P(X = k) = p(1 — p)* 1, k> 1;
1
o Expectation: E(X) = —;
b
. 1—0p 1
@ Variance: var(X) = < .
®=Zr<
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Thus

:ZE(kaq—kl Z k+1:n %:an. O

Llet v, =1+ =+---+ = —logn, then
2 n

o {7,} decreases;
o {7} is bounded and 0 < ~,, < 1.
® Ynlv~0.577.

Here ~ is called the Euler constant.
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Thus

:ZE(kaq—kl Z k+1:n %:an. O

Llet v, =1+ =+---+ = —logn, then
2 n

o {7,} decreases;
o {7} is bounded and 0 < ~,, < 1.
® Ynlv~0.577.

Here ~ is called the Euler constant.

n

Z%flogn

k=1

We have <1, and |[E(7) — nlogn| < n.
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Large Deviation

7 is unlikely to be much larger than its expected value.

Theorem (Proposition 2.4, MCMT)

For any ¢ > 0, P(7 > [nlogn+ cn]) < exp(—c).
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Large Deviation

7 is unlikely to be much larger than its expected value.

Theorem (Proposition 2.4, MCMT)

For any ¢ > 0, P(7 > [nlogn+ cn]) < exp(—c).

Proof. Let A; be the event that the coupon 7 does not appear among the first
[nlogn+ cn| coupons. Observe first that

P(r > [nlogn+ cn]) = (UA)SZJP’(A)
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Large Deviation

7 is unlikely to be much larger than its expected value.

Theorem (Proposition 2.4, MCMT)

For any ¢ > 0, P(7 > [nlogn+ cn]) < exp(—c).

Proof. Let A; be the event that the coupon 7 does not appear among the first
[nlogn+ cn| coupons. Observe first that

P(r > [nlogn+ cn]) = (UA)SZJP’(A)

1
In each trial, the probability of not drawing coupon iis 1 — —, so
n

n 1 [nlog n+cn] 1 [nlog n+cn

i=1

Shengbo Dong Coupon collecting February 26 7/11



1
Now we use the inequality 1 + z < exp(z) with 2= —— to get
n

1 1
l1-=—<exp|—|,
n n

and [nlogn+ cn] > nlogn+ cn, thus

[nlog n+cn]

1 1

RIS — n (1 _ ) < nexp (_nogHm> _
n n
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1
Now we use the inequality 1 + z < exp(z) with 2= —— to get
n

1 1
l1-=—<exp|—|,
n n

and [nlogn+ cn] > nlogn+ cn, thus

[nlog n+cn]

1 1

RHS — n(l _ ) < nexp (_“) _ exp(—c). O
n n

When ¢ — oo,

P(r > [nlogn+ cn]) < exp(—c) — 0.
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Limit Theorem

General Model

Let T}, be the time we spend to collect n different coupons.

o E(T, _nz—wnlogn

n n
1 1
2 2
eVl Sw) o = L
k=1 k=1
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General Model

Let T}, be the time we spend to collect n different coupons.

o E(T, _ng —anogn
. 1 "1
T,) < n? — = 17? —.
o var(T,) <n 2 Ry e n kz:;]#

Recall (Basel problem)

" q 2

k=1
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Theorem (Example 2.2.7, PTE)

T,
nlogn

— 1 in probability.
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Theorem (Example 2.2.7, PTE)

Ty

— 1 in probability.
nlogn

ar(T),)

Proof. Since v
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————= — 0, we have
(E(Tn))? '

T, —nl
In T MOBN — 0 in probability.
nlogn
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Theorem (Example 2.2.7, PTE)

Ty
— 1 in probability.
nlogn

) var(T),)
Proof. Since —————% — 0, we have
(E(Tn))?

T, —nl
In T MOBN — 0 in probability.
nlogn

Theorem (Extension of previous bounds)

T, — nl
i L n, where P(n < ¢) = exp(— exp(—c)).
n

O
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Theorem (Example 2.2.7, PTE)

Ty
— 1 in probability.
nlogn

) var(T),)
Proof. Since —————% — 0, we have
(E(Tn))?

T, —nl
In T MOBN — 0 in probability. [
nlogn

Theorem (Extension of previous bounds)

T, — nl
i L n, where P(n < ¢) = exp(— exp(—c)).
n

Based on this theorem, we have

T, —nl
P (nogn > c) =P(T,, > nlogn+ cn) = 1 — exp(—exp(—c)).
n
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Thanks for listening!



